Nukes in Space to Deal with Dangerous Asteroids?
2012-11-22 0:00

Compiled by :

Nuclear one-two punch could knock out dangerous asteroid

Destroying a dangerous asteroid with a nuclear bomb is a well-worn trope of science fiction, but it could become reality soon enough.

Scientists are developing a mission concept that would blow apart an Earth-threatening asteroid with a nuclear explosion, just like Bruce Willis and his oilmen-turned-astronaut crew did in the 1998 film "Armageddon."

But unlike in the movie, the spacecraft under development — known as the Hypervelocity Asteroid Intercept Vehicle, or HAIV — would be unmanned. It would hit the space rock twice in quick succession, with the non-nuclear first blow blasting out a crater for the nuclear bomb to explode inside, thus magnifying its asteroid-shattering power.

"Using our proposed concept, we do have a practically viable solution — a cost-effective, economically viable, technically feasible solution," study leader Bong Wie, of Iowa State University, said Wednesday at the 2012 NASA Innovative Advanced Concepts (NIAC) meeting in Virginia.

When, not if
Earth has been pummeled by asteroids throughout its 4.5 billion-year history, and some of the strikes have been catastrophic. For example, a 6-mile-wide (10 kilometers) space rock slammed into the planet 65 million years ago, wiping out the dinosaurs.

Earth is bound to be hit again, and relatively soon. Asteroids big enough to cause serious damage today — not necessarily the extinction of humans, but major disruptions to the global economy — have hit the planet on average every 200 to 300 years, researchers say.

So humanity needs to have a plan in hand to deal with the next threatening asteroid, many scientists stress.

That plan should include deflection strategies, they say. Given a few decades of lead time, a threatening space rock could be nudged off course — perhaps by employing a tag-along "gravity tractor" probe, or even by painting the asteroid white and letting sunlight give it a push.

But humanity also needs to be prepared for an asteroid that pops up on scientists’ radar just weeks before a potential impact. That scenario might demand the nuclear option that Wie and his colleagues are working to develop.

This diagram shows a mission concept that would destroy an asteroid with a nuclear bomb, which would detonate in a crater blasted out by a smaller impactor.

A one-two punch
NASA engineers identified 168 technical flaws in "Armageddon," Wie said. But one thing the movie got right is the notion that a nuke will be far more effective if it explodes inside an asteroid rather than at its surface. (At a depth of 10 feet, or 3 meters, the bomb’s destructive power would be about 20 times greater, Wie said.)


Read the full article at:


In addition to the natural radiation dangers which will confront the space traveler, we must also consider manmade perils which may exist during time of war. In particular, the use of nuclear weapons may pose a serious problem to manned military space operations. The singular emergence of man as the most vulnerable component of a space-weapon system becomes dramatically apparent when nuclear weapon effects in space are contrasted with the effects which occur within the Earth’s atmosphere.

When a nuclear weapon is detonated close to the Earth’s surface the density of the air is sufficient to attenuate nuclear radiation (neutrons and gamma rays) to such a degree that the effects of these radiations are generally less important than the effects of blast and thermal radiation. The relative magnitudes of blast, thermal and nuclear radiation effects are shown in figure 1 for a nominal fission weapon (20 kilotons) at sea level.1

If a nuclear weapon is exploded in a vacuum-i. e., in space-the complexion of weapon effects changes drastically:

First, in the absence of an atmosphere, blast disappears completely.

Second, thermal radiation, as usually defined, also disappears. There is no longer any air for the blast wave to heat and much higher frequency radiation is emitted from the weapon itself.

Third, in the absence of the atmosphere, nuclear radiation will suffer no physical attenuation and the only degradation in intensity will arise from reduction with distance. As a result the range of significant dosages will be many times greater than is the case at sea level.

Figure 2 shows the dosage-distance relationship for a 20-kiloton explosion when the burst takes place at sea level and when the burst takes place in space. We see that in the range 500 to 5,000 roentgens the space radii are of the order of 8 to 17 times as large as the sea-level radii. At lower dosages the difference between the two cases becomes even larger.

On August 1 and 12, 1958, nuclear warheads were detonated in missiles over Johnston Island in the Pacific.2 3 These detonations were accompanied by impressive visual displays seen over wide areas, leading observers to the opinion that the detonations took place at very high altitudes.4-7 These displays were even seen on Samoa, some 2,000 miles from Johnston Island.

The visual displays were accompanied by disruptive effects on radio communications. Specifically, most commercial communication systems operating on the high-frequency (about 5 to 25 megacycles) bands in the Pacific noted substantial disturbances. Most links within a few hundred miles of Johnston Island experienced "outages" for as long as several hours, at various times over a period of about a day. In general, the effects on high-frequency communication links appear to have been quite similar to the effects produced by giant solar flares.

Starfish Prime was a high-altitude nuclear test conducted by the United States of America on July 9, 1962, a joint effort of the Atomic Energy Commission (AEC) and the Defense Atomic Support Agency (which became the Defense Nuclear Agency in 1971).

Launched via a Thor rocket and carrying a W49 thermonuclear warhead (manufactured by Los Alamos Scientific Laboratory) and a Mk. 2 reentry vehicle, the explosion took place 250 miles (400 km) above a point 19 miles (31 km) southwest of Johnston Island in the Pacific Ocean. It was one of five tests conducted by the USA in outer space as defined by the FAI. It produced a yield equivalent to 1.4 megatons of TNT. (Source: Wikipedia)

Nuclear test "Starfish Prime’ through thin cloud, as seen from Honolulu. July 9, 1962

The debris fireball stretching along Earth’s magnetic field with air-glow aurora as seen at 3 minutes from an RC-135 surveillance aircraft.


While some of the energetic beta particles followed the Earth’s magnetic field and illuminated the sky, other high-energy electrons became trapped and formed radiation belts around the earth. There was much uncertainty and debate about the composition, magnitude and potential adverse effects from this trapped radiation after the detonation. The weaponeers became quite worried when three satellites in low earth orbit were disabled. These man-made radiation belts eventually crippled one-third of all satellites in low earth orbit. Seven satellites failed over the months following the test as radiation damaged their solar arrays or electronics, including the first commercial relay communication satellite, Telstar.[12][13][14] Detectors on Telstar, TRAAC, Injun, and Ariel 1 were used to measure distribution of the radiation produced by the tests.[15]

In 1963, Brown et al. reported in the Journal of Geophysical Research that Starfish Prime had created a belt of MeV electrons,[16] and Wilmot Hess reported in 1968 that some Starfish electrons remained for five years. (Source: Wikipedia)

Conventional Space Weapons

The fireball and blast wave is why nuclear warheads detonating in the atmosphere will flatten buildings for tens of kilometers, but detonations in space have a damage range under one kilometer.

If you want to get more bang for your buck, there is a possibility of making nuclear shaped charges. Instead of wasting their blast on a spherical surface, it can be directed at the target spacecraft. This will reduce the surface area of the blast, thus increasing the value for kiloJoules per square meter.

According to John Schilling, with current technology, the smallest nuclear warhead would probably be under a kiloton, and mass about twenty kilograms. A one-megaton warhead would be about a metric ton, though that could be reduced by about half with advanced technology.

Eric Rozier has an on-line calculator for nuclear weapons. Eric Henry has a spreadsheet that does nuclear blast calculations, including shaped charges, on his website.. For bomb blasts on the surface of the Earth or other planet with an atmosphere, you can use the handy-dandy Nuclear Bomb Effects Computer, found online here.

Back in the 1960’s, rocket scientist came up with the infamous "Orion Drive." This was basically a firecracker under a tin can. Except the tin can is a spacecraft, and the firecracker is a nuclear warhead.

Anyway, they realized that about 90% of the nuclear energy of an unmodified nuclear device would be wasted. The blast is radiated isotropically, only a small amount actually hits the pusher-plate and does useful work. So they tried to figure out how to channel all the blast in the desired direction. A nuclear shaped charge.

Remember that in the vacuum of space, most of the energy of a nuclear warhead is in the form of x-rays. The nuclear device is encased in a radiation case of x-ray opaque material (uranium) with a hole in the top. This forces the x-rays to to exit only from the hole. Where they run full tilt into a large mass of beryllium oxide (channel filler). The beryllium transforms the nuclear fury of x-rays into a nuclear fury of heat. Perched on top of the beryllium is the propellant: a thick plate of tungsten. The blast of heat turns the tungsten plate into a star-core-hot spindle-shaped-plume of ionized tungsten plasma. The x-ray opaque material and the beryllium oxide also vaporize a few microseconds later, but that’s OK, their job is done. The tungsten plasma jet hits square on the Orion drive pusher plate. With the reference design of nuclear pulse unit, the plume is confined to a cone of about 22.5 degrees. About 85% of the nuclear device’s energy is directed into the desired direction, which I think you’d agree is a vast improvement over 10%.

About this time the representatives of the military (who were funding this project) noticed that if you could make the plume a little faster and with a narrower cone, it would no longer be a propulsion system component. It would be a directed energy weapon.

Tune into Red Ice Radio:

Randall Carlson - Hour 1 - Cycles of Catastrophe & Cosmic Patterns

Courtney Brown - Hour 2 - 2013 Timelines & Anomalies

Lucus - The Destroyer Star & The Future of Mankind

Richard C. Hoagland - The Secret Space Program & The Fukushima Nuclear Reactor Disaster

Matthew Stein - Hour 2 - 400 Chernobyls, Super Solar Storms & EMPs

Alfred Webre - Exopolitics, NASA Bombing of the Moon, Outer Space Treaty & E.T.

Mike Bara - Dark Mission, The Occult NASA Moon Mission

Related Articles
LCROSS Team Changes Target Crater for Impact
What’s next for NASA’s LCROSS moon-crashing mission
NASA’s LCROSS ’plume’ a no-show
Last Year’s LCROSS Moonshot Splashed Up "Lots Of Water"
Kinetic Bombardment
Asteroid Crashes Likely Gave Earth Its Water
Asteroid hunters want to launch private telescope
Does Asteroid Mining Violate Space Law?
Billionaires Say They Will Save Humanity by Mining Asteroids (Now We’re Saved!)
Blast it or paint it: Asteroid to threaten Earth in 2013
Scientists stunned by surface of massive asteroid
Britain and the U.S. top league table of countries that would be worst affected by an asteroid strike
Militarization and Weaponization of Outer Space

Latest News from our Front Page

The Pilgrims Were Definitely Not Like Modern-Day Refugees
2015-11-27 20:01
This upcoming Thanksgiving Day is sure to offer you and your family plenty of opportunities to argue over whether America should be welcoming Syrian refugees. If you have any liberal relatives or friends coming over for your Thursday feast, they’re going to relish the chance to tell everyone that the Pilgrims were refugees too — and hope that statement decimates all ...
ISIS to France: "We will be coming. Victory has been promised to us by Allah"
2015-11-26 3:33
Homegrown French ISIS fighters have issued a chilling threat of new attacks on France just 24 hours after the terrorist group used movie footage of the Eiffel Tower's collapse in another video.  A balaclava-clad militant is seen warning 'we will be coming, we will come to crush your country' in footage posted on Twitter earlier today. It is unclear where the film ...
ISIS teenage 'poster girl' Samra Kesinovic 'beaten to death' as she tried to flee the group
2015-11-26 1:07
She appeared in social media images for the group carrying a Kalashnikov and surrounded by armed men A teenage girl who ran away from her Vienna home to join Isis in Syria has reportedly been beaten to death by the group after trying to escape. Samra Kesinovic, 17, travelled to Syria last year with her friend Sabina Selimovic, 15. The two became a ...
The Right Stuff's flagship podcast "The Daily Shoah" has been censored by Soundcloud
2015-11-25 22:56
Editor's note: The PC corporate moral police strike again. Just as Radio 3Fourteen & Red Ice Radio were censored from iTunes, The Daily Shoah was pulled from Soundcloud today. As per usual, there is a double standard, they allow any kind of anti-White material: No counter culture humor making fun of the genocidal mainstream garbage is allowed! ... From: Soundcloud took it upon ...
Merkel Welcomes A Million More: Vows To Stand By Refugee Policy Despite Security Fears
2015-11-25 21:05
Chancellor Angela Merkel vowed on Wednesday to stick to her open-door refugee policy, defying criticism at home and abroad which has intensified due to growing fears about a potential security risk after the Islamist attacks in Paris. Conservative Merkel faces splits in her right-left coalition and pressure from EU states, including France, over her insistence that Germany can cope with up ...
More News »