Britain: Nanoscale Energy Storage Material Under Development
2010 02 17

By Boris Cambreleng | AFP

A nanoscale material developed in Britain could one day yield wafer-thin cellphones and light-weight, long-range electric cars powered by the roof, boot and doors, researchers have reported.

For now, the new technology -- a patented mix of carbon fibre and polymer resin that can charge and release electricity just like a regular battery -- has not gone beyond a successful laboratory experiment.

But if scaled-up, it could hold several advantages over existing energy sources for hybrid and electric cars, according to the scientists at Imperial College London who developed it.


Lithium-ion batteries used in the current generation of plug-in vehicles depend on dwindling supplies of lithium.

Lithium-ion batteries used in the current generation of plug-in vehicles are not only heavy, which adds to energy consumption, but also depend on dwindling supplies of the metal lithium, whose prices have risen steadily.

The new material -- while expensive to make -- is entirely synthetic, which means production would not be limited by availability of natural resources.

Another plus: conventional batteries need chemical reactions to generate juice, a process which causes them to degrade over time and gradually lose the capacity to hold a charge.

The carbon-polymer composite does not depend on chemistry, which not only means a longer life but a quicker charge as well.

Because the material is composed of elements measured in billionths of a metre, "you don't compromise the mechanical properties of the fibers," explained Emile Greenhalgh, an engineer at Imperial College and one of the inventors.

As hard a steel, it could in theory double as the body of the vehicle, cutting the weight by up to a third.

The Tesla Roadster, a luxury electric car made in the United States, for example, weighs about 1,200 kilos (2,650 pounds), more than a third of which is accounted for by batteries, which turn the scales at a hefty 450 kilos (990 pounds). The vehicle has a range of about 300 kilometers (185 miles) before a recharge is needed.

"With our material, we would ultimately lose that 450 kilos (990 pounds)," Greenhalgh said in an interview. "That car would be faster and travel further."

Vehicles with bodies crafted from the new material would likewise shed weight because it is four time lighter than steel, while remaining as strong and stiff.

"It is the sort of thing you find in tennis rackets or fishing rods -- a carbon fibre composite," Greenhalgh said.

"We aim to increase the surface area of the fibres as much as possible without degrading the mechanical properties. The larger the surface, the more electrical charge they can store."

The European Union (EU) announced last week that it would sink 3.4 million euros (4.6 million dollars) over three years into developing the new technology, with Imperial College coordinating a project spread over nine companies and institutes in Britain, Sweden, Germany and Greece.
Swedish car manufacturer Volvo has said it might build a demonstration panel into an existing electric car prototype.

Within three years, the researchers expect shave 15 percent off the weight of a car, and in five to six years, be able to integrate the material into the body.
But it will take a decade before the new material could fully replace existing batteries, Greenhalgh cautioned.

One of the question marks is cost.

Carbon fibre is a lot more expensive than steel, but mass production should bring down costs dramatically, he said.

Article from: AFP



Related Articles
Smart Materials
Material bends, stretches and conducts electricity?
New material may be step towards 3D invisibility cloak
'Recordable' Proteins As Next-generation Memory Storage Materials
'Invisible' Material Key to DARPA Dream Display
Graphene: The Next Semiconductor Material?
Nanobattery created to power RFID tags
Prototype Nokia phone recharges without wires


Latest News from our Front Page

What happened to Journalist Serena Shim? Assassinated? Find out what happened to Serena, Press TV director calls on Turkey
2014 10 21
Press TV news director Hamid Reza Emadi says the “suspicious death,” of the news channel’s correspondent in Turkey is a tragedy for “anyone who wants to get the truth.” Emadi made the remarks in an interview with Press TV on Sunday following Serena Shim’s death across the border from Syria’s Kurdish city of Kobani, where the ISIL terrorists and Kurdish fighters ...
Ancient Roman Nanotechnology Inspires Next-Generation Holograms for Information Storage
2014 10 21
The Lycurgus Cup, as it is known due to its depiction of a scene involving King Lycurgus of Thrace, is a 1,600-year-old jade green Roman chalice that changes colour depending on the direction of the light upon it. It baffled scientists ever since the glass chalice was acquired by the British Museum in the 1950s, as they could not work ...
Rapid Geomagnetic Reversal Possibility: Confirmed
2014 10 21
From the video: "The scientists who conducted the study are still unsure why the magnetic field is weakening, but one likely reason is the Earth’s magnetic poles are getting ready to flip, said Rune Floberghagen, the ESA’s Swarm mission manager. In fact, the data suggest magnetic north is moving toward Siberia." Tune into Red Ice Radio: Ben Davidson - Suspicious0bservers: Space Weather ...
Georgia Guide Stone 2014 cube stone removal
2014 10 21
From: Youtube: Was it all just a gag? it seems the cube stone just happens to be made out of the same Elberton granite that the rest of this morbid monument is made from.
Secret Project Created Weaponized Ebola In South Africa In The 1980s
2014 10 21
“No records are available to confirm that the biological agents were destroyed.” Operating out of South Africa during the Apartheid era in the early 1980’s, Dr. Wouter Basson launched a secret bioweapons project called Project Coast. The goal of the project was to develop biological and chemical agents that would either kill or sterilize the black population and assassinate political enemies. ...
More News »