First Electronic Quantum Processor Created
2009 07 01

ScienceDaily.com

A team led by Yale University researchers has created the first rudimentary solid-state quantum processor, taking another step toward the ultimate dream of building a quantum computer.


The two-qubit processor is the first solid-state quantum processor that resembles a conventional computer chip and is able to run simple algorithms. (Credit: Blake Johnson/Yale University)


They also used the two-qubit superconducting chip to successfully run elementary algorithms, such as a simple search, demonstrating quantum information processing with a solid-state device for the first time. Their findings appeared in Nature's advanced online publication June 28.

"Our processor can perform only a few very simple quantum tasks, which have been demonstrated before with single nuclei, atoms and photons," said Robert Schoelkopf, the William A. Norton Professor of Applied Physics & Physics at Yale. "But this is the first time they've been possible in an all-electronic device that looks and feels much more like a regular microprocessor."

Working with a group of theoretical physicists led by Steven Girvin, the Eugene Higgins Professor of Physics & Applied Physics, the team manufactured two artificial atoms, or qubits ("quantum bits"). While each qubit is actually made up of a billion aluminum atoms, it acts like a single atom that can occupy two different energy states. These states are akin to the "1" and "0" or "on" and "off" states of regular bits employed by conventional computers. Because of the counterintuitive laws of quantum mechanics, however, scientists can effectively place qubits in a "superposition" of multiple states at the same time, allowing for greater information storage and processing power.

For example, imagine having four phone numbers, including one for a friend, but not knowing which number belonged to that friend. You would typically have to try two to three numbers before you dialed the right one. A quantum processor, on the other hand, can find the right number in only one try.

"Instead of having to place a phone call to one number, then another number, you use quantum mechanics to speed up the process," Schoelkopf said. "It's like being able to place one phone call that simultaneously tests all four numbers, but only goes through to the right one."

These sorts of computations, though simple, have not been possible using solid-state qubits until now in part because scientists could not get the qubits to last long enough. While the first qubits of a decade ago were able to maintain specific quantum states for about a nanosecond, Schoelkopf and his team are now able to maintain theirs for a microsecond—a thousand times longer, which is enough to run the simple algorithms.

To perform their operations, the qubits communicate with one another using a "quantum bus"—photons that transmit information through wires connecting the qubits—previously developed by the Yale group.
The key that made the two-qubit processor possible was getting the qubits to switch "on" and "off" abruptly, so that they exchanged information quickly and only when the researchers wanted them to, said Leonardo DiCarlo, a postdoctoral associate in applied physics at Yale's School of Engineering & Applied Science and lead author of the paper.

Next, the team will work to increase the amount of time the qubits maintain their quantum states so they can run more complex algorithms. They will also work to connect more qubits to the quantum bus. The processing power increases exponentially with each qubit added, Schoelkopf said, so the potential for more advanced quantum computing is enormous. But he cautions it will still be some time before quantum computers are being used to solve complex problems.

"We're still far away from building a practical quantum computer, but this is a major step forward."


Authors of the paper include Leonardo DiCarlo, Jerry M. Chow, Lev S. Bishop, Blake Johnson, David Schuster, Luigi Frunzio, Steven Girvin and Robert Schoelkopf (all of Yale University), Jay M. Gambetta (University of Waterloo), Johannes Majer (Atominstitut der Österreichischen Universitäten) and Alexandre Blais (Université de Sherbrooke).
Article source: ScienceDaily.com




Related:

Jim Elvidge - Programmed Reality, The Power of 10, Science & The Soul

Nick Begich - Mind Control & Emerging Technologies






Related Articles
A short Introduction to Quantum Computation
Is Quantum Mechanics Controlling Your Thoughts?
How Time-Traveling Could Affect Quantum Computing
Nano-Diamonds Might Lead to Quantum Computing
'Light trap' is a Step Towards Quantum Memory
Quantum computer


Latest News from our Front Page

Why Can’t We Publish Addresses Of New York Times Reporters?
2014 11 28
New York Times reporters Julie Bosman and Campbell Robertson published the address of Darren Wilson in the New York Times so here are their addresses. GotNews.com strenuously objects to publishing the addresses of individuals who are being targeted with death threats. GotNews.com published the address of Ebola patient Nina Pham so that people could avoid going to her Dallas apartment. But it would ...
Terrorists? Interview with Varg Vikernes and Marie Cachet
2014 11 28
Marie Cachet and Varg Vikernes are what we call commonly ordinary people. However, for motives meanly political, the Ministry of the Interior decided to abuse its power to damage them ; "there is nothing more annoying than a low man placed in high position." (Roman saying) Today, Varg risks the eviction of the French territory without valid ground. Three very ...
The Coudenhove-Kalergi Plan - The Genocide Of The People Of Europe
2014 11 28
Mass immigration is a phenomenon, the causes of which are still cleverly concealed by the system, and the multicultural propaganda is trying to falsely portray it as inevitable. With this article we intend to prove once and for all, that this is not a spontaneous phenomenon. What they want to present as an inevitable outcome of modern life, is actually ...
Starbucks Supports Pro-GMO Company
2014 11 26
Another reason why you should not go to Starbucks. Starbucks has an image of being a socially responsible, environmentally friendly company (Really?). In 2013, 95 percent of their coffee was ethically sourced, and their goal is to reach 100 percent by 2015.1 Other goals include reducing water consumption by 25 percent in their company-operated stores by 20152 and mobilizing their employees and ...
Group Polarization and the Fad of Ethno-masochism
2014 11 26
From "Group polarization: A critical review and meta-analysis". Journal of Personality and Social Psychology. 6 50 (6): 1141--1151 The psychology of White self hatred. Political correctness IS a mental disorder. More: Group polarization: A critical review and meta-analysis. Isenberg, Daniel J. the paper Indoctrinate U Harvard Professor Noel Ignatiev talks about how to end the White race The History of Political Correctness The Narrative: The origins of Political ...
More News »