First Electronic Quantum Processor Created
2009 07 01

ScienceDaily.com

A team led by Yale University researchers has created the first rudimentary solid-state quantum processor, taking another step toward the ultimate dream of building a quantum computer.


The two-qubit processor is the first solid-state quantum processor that resembles a conventional computer chip and is able to run simple algorithms. (Credit: Blake Johnson/Yale University)


They also used the two-qubit superconducting chip to successfully run elementary algorithms, such as a simple search, demonstrating quantum information processing with a solid-state device for the first time. Their findings appeared in Nature's advanced online publication June 28.

"Our processor can perform only a few very simple quantum tasks, which have been demonstrated before with single nuclei, atoms and photons," said Robert Schoelkopf, the William A. Norton Professor of Applied Physics & Physics at Yale. "But this is the first time they've been possible in an all-electronic device that looks and feels much more like a regular microprocessor."

Working with a group of theoretical physicists led by Steven Girvin, the Eugene Higgins Professor of Physics & Applied Physics, the team manufactured two artificial atoms, or qubits ("quantum bits"). While each qubit is actually made up of a billion aluminum atoms, it acts like a single atom that can occupy two different energy states. These states are akin to the "1" and "0" or "on" and "off" states of regular bits employed by conventional computers. Because of the counterintuitive laws of quantum mechanics, however, scientists can effectively place qubits in a "superposition" of multiple states at the same time, allowing for greater information storage and processing power.

For example, imagine having four phone numbers, including one for a friend, but not knowing which number belonged to that friend. You would typically have to try two to three numbers before you dialed the right one. A quantum processor, on the other hand, can find the right number in only one try.

"Instead of having to place a phone call to one number, then another number, you use quantum mechanics to speed up the process," Schoelkopf said. "It's like being able to place one phone call that simultaneously tests all four numbers, but only goes through to the right one."

These sorts of computations, though simple, have not been possible using solid-state qubits until now in part because scientists could not get the qubits to last long enough. While the first qubits of a decade ago were able to maintain specific quantum states for about a nanosecond, Schoelkopf and his team are now able to maintain theirs for a microsecond—a thousand times longer, which is enough to run the simple algorithms.

To perform their operations, the qubits communicate with one another using a "quantum bus"—photons that transmit information through wires connecting the qubits—previously developed by the Yale group.
The key that made the two-qubit processor possible was getting the qubits to switch "on" and "off" abruptly, so that they exchanged information quickly and only when the researchers wanted them to, said Leonardo DiCarlo, a postdoctoral associate in applied physics at Yale's School of Engineering & Applied Science and lead author of the paper.

Next, the team will work to increase the amount of time the qubits maintain their quantum states so they can run more complex algorithms. They will also work to connect more qubits to the quantum bus. The processing power increases exponentially with each qubit added, Schoelkopf said, so the potential for more advanced quantum computing is enormous. But he cautions it will still be some time before quantum computers are being used to solve complex problems.

"We're still far away from building a practical quantum computer, but this is a major step forward."


Authors of the paper include Leonardo DiCarlo, Jerry M. Chow, Lev S. Bishop, Blake Johnson, David Schuster, Luigi Frunzio, Steven Girvin and Robert Schoelkopf (all of Yale University), Jay M. Gambetta (University of Waterloo), Johannes Majer (Atominstitut der Österreichischen Universitäten) and Alexandre Blais (Université de Sherbrooke).
Article source: ScienceDaily.com




Related:

Jim Elvidge - Programmed Reality, The Power of 10, Science & The Soul

Nick Begich - Mind Control & Emerging Technologies






Related Articles
A short Introduction to Quantum Computation
Is Quantum Mechanics Controlling Your Thoughts?
How Time-Traveling Could Affect Quantum Computing
Nano-Diamonds Might Lead to Quantum Computing
'Light trap' is a Step Towards Quantum Memory
Quantum computer


Latest News from our Front Page

6,000-Year-Old Temple with Possible Sacrificial Altars Discovered
2014 10 21
A 6,000-year-old temple holding humanlike figurines and sacrificed animal remains has been discovered within a massive prehistoric settlement in Ukraine. Built before writing was invented, the temple is about 60 by 20 meters (197 by 66 feet) in size. It was a "two-story building made of wood and clay surrounded by a galleried courtyard," the upper floor divided into five ...
What happened to Journalist Serena Shim? Assassinated? Find out what happened to Serena, Press TV director calls on Turkey
2014 10 21
Press TV news director Hamid Reza Emadi says the “suspicious death,” of the news channel’s correspondent in Turkey is a tragedy for “anyone who wants to get the truth.” Emadi made the remarks in an interview with Press TV on Sunday following Serena Shim’s death across the border from Syria’s Kurdish city of Kobani, where the ISIL terrorists and Kurdish fighters ...
Ancient Roman Nanotechnology Inspires Next-Generation Holograms for Information Storage
2014 10 21
The Lycurgus Cup, as it is known due to its depiction of a scene involving King Lycurgus of Thrace, is a 1,600-year-old jade green Roman chalice that changes colour depending on the direction of the light upon it. It baffled scientists ever since the glass chalice was acquired by the British Museum in the 1950s, as they could not work ...
Rapid Geomagnetic Reversal Possibility: Confirmed
2014 10 21
From the video: "The scientists who conducted the study are still unsure why the magnetic field is weakening, but one likely reason is the Earth’s magnetic poles are getting ready to flip, said Rune Floberghagen, the ESA’s Swarm mission manager. In fact, the data suggest magnetic north is moving toward Siberia." Tune into Red Ice Radio: Ben Davidson - Suspicious0bservers: Space Weather ...
Georgia Guide Stone 2014 cube stone removal
2014 10 21
From: Youtube: Was it all just a gag? it seems the cube stone just happens to be made out of the same Elberton granite that the rest of this morbid monument is made from.
More News »