Putting electronics in a spin
2007 08 09

By Jonathan Fildes | news.bbc.co.uk


Spintronics harnesses the spin of sub-atomic particles
When engineers flick the switch to turn on the world's fastest supercomputer later this year it will be capable of chewing its way through 1,000 trillion calculations every second.

But this speedy number cruncher could soon look like the equivalent of a dusty abacus if scientists who have gathered in York deliver on their promises.

Nearly 150 of them have convened in the medieval town to explore the future of spintronics (spin-based electronics), an area that could have profound effects on areas as diverse as data storage, microelectronics and quantum computing.

"With quantum computing you are able to attack some problems on the time scales of seconds, which might take an almost infinite amount of time with classical computers," said Professor David Awschalom of the University of California, Santa Barbara.

Endless possibility
Spintronics, also known as magnetoelectronics, is an emerging technology that harnesses the spin of particles.

Conventional electronics ignores these rotations and instead exploits the movement or accumulation of electrons to do useful calculations or store data.


Spintronics is already used in MRAM devices produced by Freescale
The movement of electrons through the tiny wires found in modern microchips is the reason why laptops become so hot.

But, by harnessing the twist and turns of particles - detected as a weak magnetic force - scientists hope to unlock almost infinite computing power and storage, without the heat.

"If you think about the spin of a particle, such as an electron, it can point up or down or at any superposition of the two; partially up or partially down," said Professor Awschalom.

Each of these different "superpositions" can represent an almost infinite number of combinations of ones and zeros.

"You can store an almost infinite number of bits of information in one particle space," he added.

This almost limitless number of possibilities would also pave the way for advanced computer processing, such as is needed in quantum computing.

"The spin of a particle is a very natural particle for quantum information processing," said Professor Awschalom.

Next generation
This type of advanced computation is still a long-way off, but hi-tech companies intent on packing ever-increasing power and storage into smaller and smaller areas, are already taking spintronics seriously.

"The conventional microelectronics industry and the magnetic storage industry are approaching their limits very fast. Spintronics might offer a way out," said Dr Yongbing Xu of the University of York.


Inside the hard drive
Advances have already been made, with basic spintronic devices already inside the vast majority of computers and laptops.

For example, most hard drives today use a "spin valve", a device that reads information off the individual disks or platters that make up a hard drive.

"That enabled a thousand fold improvement in the storage capacity of disk drives from when we introduced it in 1998," said Dr Stuart Parkin of computer giant IBM and the inventor of the device.

He describes the spin valve as part of "the first generation" of spintronic devices, relatively simple structures built of magnetic materials.

Second generation devices, he said, have also recently hit the shelves in the form of a type of computer memory known as MRAM (Magnetoresistive Random Access Memory). In 2006, chip firm Freescale began to offer 1MB MRAM devices for example.

These devices are a hybrid of a hard disk and more up to date types of memory, such as flash memory, commonly used in digital cameras.

Like flash, MRAM has no moving parts and retains all of its data even when the power is switched off. But, like a hard drive, it stores data as magnetic charges.

But, Dr Parkin is already working on what he believes could be the third generation of spintronic memory devices.

Back and forth
He is currently building a spintronic prototype of what he calls "racetrack memory", a device that could increase storage density by up to 100 times.

It achieves this by building "high-rise" chips.

"The racetrack is a very tall column of magnetic material; it is essentially a magnetic nanowire standing on end above the surface a silicon wafer," said Dr Parkin.

Along the nanowire would be polarised regions, magnetised to point towards the north or south pole.

"The boundary between these regions is a magnetic domain wall and that is where the information is stored."


Spintronics could render today's supercomputers obsolete. More: Blue Gene/L

The domain walls are moved up and down the U-shaped wire by applying a tiny pulse of spin-polarised current - a flow of electrons all spinning in one direction - to either end of the wire.

When the electrons make contact with a domain wall it moves it along the wire, shuffling the data like train carriages being shunted around a track.

"You're not moving any atoms you're just moving a magnetic orientation," he said.

The data would be read by a simple read/write device at the bottom of the "U".

A working device would look like a small forest of nanowires covering the surface of a chip. But, it could be some time before racetrack memory is common place.

"It will probably take another five years before we have a complete prototype."

First steps
But this maybe long before researchers are able to build one of the holy grails of spintronics, a semiconductor that integrates both computer processing and storage.

"In that case it would be faster and it would consume less energy [than today's semiconductors]," explained Dr Xu.

A key challenge of building advanced devices is controlling and manipulating the spin of atoms so that the data, in the form of different spin orientations, can be written and read accurately.

"In the last few years people have been able to read one single spin and manipulate it," said Professor Awschalom. "Now some of the challenges are to do a lot of these operations efficiently."

Material researchers also need to come up with new materials that allow these operations to be done at room temperature, rather than the impractical sub-zero temperatures used in the lab.

And when that happens, spintronics may truly have come of age.

"We could make a computer that is completely different than what we are using today," said Dr Xu.

WUN-SPIN 2007 runs from 7-10 August at St William's College, University of York.


  • Nickel-iron alloy wires 1-10 microns (millionth of a metre) in length

  • Data held in domain walls between regions of different polarisation

  • 10 microns length could hold 100 domain walls

  • Data is written or read by read/write head on silicon base

  • Relevant domain wall shunted to read/write head by applying charge

  • Reversing charge moves domain walls back (2)



  • Related Articles
    York Rite
    Antique engines inspire nano chip
    Nanogenerator provides continuous power by harvesting energy from the environment
    The Electron, Nanotechnology, and Solar Power
    Chips push through nano-barrier


    Latest News from our Front Page

    Secret Project Created Weaponized Ebola In South Africa In The 1980s
    2014 10 21
    “No records are available to confirm that the biological agents were destroyed.” Operating out of South Africa during the Apartheid era in the early 1980’s, Dr. Wouter Basson launched a secret bioweapons project called Project Coast. The goal of the project was to develop biological and chemical agents that would either kill or sterilize the black population and assassinate political enemies. ...
    Controlling the American Mind: The Viral Liturgical Psychodrama
    2014 10 20
    In order to successfully navigate the raging sea of media shit storm, one must be ever-mindful of the overall designs of mass media without getting lost in endless details and rabbit trails that will be forgotten in a month. Remember Bowe Bergdahl? Remember how media was furiously researching his back story to make details match-up, all of which ended up ...
    People are merging with machines
    2014 10 20
    Ian Burkhart concentrated hard. A thick cable protruded from the crown of his shaven head. A sleeve sprouting wires enveloped his right arm. The 23 - year-old had been paralysed from the neck down since a diving accident four years ago. But, in June this year, in a crowded room in the Wexner Medical Centre at Ohio State University, Burkhart’s ...
    Illegal Aliens Cleared For U.S. Military Service
    2014 10 18
    The Pentagon announced a new policy allowing illegal immigrants the opportunity to enlist in the armed forces, Thursday. USA Today reports that the new recruitment policies will focus on people with "high-demand skills" like foreign language acumen and health care training: "For the first time, the program — known as Military Accessions in the National Interest, or MAVNI — will ...
    Bronze Age Sundial-Moondial Discovered in Russia
    2014 10 16
    A strange slab of rock discovered in Russia more than 20 years ago appears to be a combination sundial and moondial from the Bronze Age, a new study finds. The slab is marked with round divots arranged in a circle, and an astronomical analysis suggests that these markings coincide with heavenly events, including sunrises and moonrises. The sundial might be "evidence of ...
    More News »