Robots Learning How Not to Hurt Humans - By Punching Them
2010 10 18

By Paul Marks | NewScientist.com


Isaac Asimov would probably have been horrified at the experiments under way in a robotics lab in Slovenia. There, a powerful robot has been hitting people over and over again in a bid to induce anything from mild to unbearable pain - in apparent defiance of the late sci-fi sage’s famed first law of robotics, which states that "a robot may not injure a human being".


Image: B.Povse, D. Koritnik, T Bajd, M Munih)



(Image: B.Povse, D. Koritnik, T Bajd, M Munih).


But the robo-battering is all in a good cause, insists Borut Povše, who has ethical approval for the work from the University of Ljubljana, where he conducted the research. He has persuaded six male colleagues to let a powerful industrial robot repeatedly strike them on the arm, to assess human-robot pain thresholds.

It’s not because he thinks the first law of robotics is too constraining to be of any practical use, but rather to help future robots adhere to the rule. "Even robots designed to Asimov’s laws can collide with people. We are trying to make sure that when they do, the collision is not too powerful," Povše says. "We are taking the first steps to defining the limits of the speed and acceleration of robots, and the ideal size and shape of the tools they use, so they can safely interact with humans."

Povše and his colleagues borrowed a small production-line robot made by Japanese technology firm Epson and normally used for assembling systems such as coffee vending machines. They programmed the robot arm to move towards a point in mid-air already occupied by a volunteer’s outstretched forearm, so the robot would push the human out of the way. Each volunteer was struck 18 times at different impact energies, with the robot arm fitted with one of two tools - one blunt and round, and one sharper.

The volunteers were then asked to judge, for each tool type, whether the collision was painless, or engendered mild, moderate, horrible or unbearable pain. Povše, who tried the system before his volunteers, says most judged the pain was in the mild to moderate range.

The team will continue their tests using an artificial human arm to model the physical effects of far more severe collisions. Ultimately, the idea is to cap the speed a robot should move at when it senses a nearby human, to avoid hurting them. Povše presented his work at the IEEE’s Systems, Man and Cybernetics conference in Istanbul, Turkey, this week.

"Determining the limits of pain during robot-human impacts this way will allow the design of robot motions that cannot exceed these limits," says Sami Haddadin of DLR, the German Aerospace Centre in Wessling, who also works on human-robot safety. Such work is crucial, he says, if robots are ever to work closely with people. Earlier this year, in a nerve-jangling demonstration, Haddadin put his own arm on the line to show how smart sensors could enable a knife-wielding kitchen robot to stop short of cutting him.

"It makes sense to study this. However, I would question using pain as an outcome measure," says Michael Liebschner, a biomechanics specialist at Baylor College of Medicine in Houston, Texas. "Pain is very subjective. Nobody cares if you have a stinging pain when a robot hits you - what you want to prevent is injury, because that’s when litigation starts."


Article from: newscientist.com


...

Video from: YouTube.com




Related Articles
Robot learns to shoot bow and arrow
Harvard awarded $10 million for robot bees video: 2009 (Video)
The real 2001: Scientists teach robots how to trick humans
’World’s first’ Arabic-speaking robot
Pregnant Robot Trains Students (Video)
First robot able to develop and show emotions is unveiled
World’s creepiest robot? Japanese inventor develops the bald, legless Telenoid
Isaac Asimov (1920- 1992 R.I.P.) (Video)
Eerie female robot learns to ’sing’ by copying human singer


Latest News from our Front Page

The Aeon of Horus is Ending and the Elites are Nervous as their Icons are Dying
2014 04 18
I predict there is going to be a huge resurgence of interest in European indigenous spiritual traditions from Norse to Celtic/Gaelic to Slavic and so on. Millions of Europeans are going to realise that we are the victims of Christianity and New Age garbage. Their bastardised Kabbalah, the psychic force used by Crowley and the elites to cement his Aeon ...
Easter - Christian or Pagan?
2014 04 18
From: truthbeknown.com Contrary to popular belief, Easter does not represent the "historical" crucifixion and resurrection of Jesus Christ. In reality, the gospel tale reflects the annual "crossification" of the sun through the vernal equinox (Spring), at which time the sun is "resurrected," as the day begins to become longer than the night. Rather than being a "Christian" holiday, Easter celebrations date back ...
Man-Made Blood Might Be Used in Transfusions by 2016
2014 04 18
Researchers in the U.K. have created the first man-made red blood cells of high enough quality to be introduced into the human body The premise of the HBO show and book series True Blood revolves around a technological breakthrough: scientists figure out how to synthesize artificial human blood, which, as an ample new source of non-human food, allows vampires to "come ...
The Trials of the Cherokee Were Reflected In Their Skulls
2014 04 18
Researchers from North Carolina State University and the University of Tennessee have found that environmental stressors – from the Trail of Tears to the Civil War – led to significant changes in the shape of skulls in the eastern and western bands of the Cherokee people. The findings highlight the role of environmental factors in shaping our physical characteristics. ...
Our Fears May Be Shaped by Ancestral Trauma
2014 04 18
Last December, an unsettling Nature Neuroscience study found that mice who were taught to associate the smell of cherry blossoms with pain produced offspring who feared the smell of cherry blossoms, even if they had never been exposed to it before. We knew that the process was epigenetic—that it was not hard-wired in the permanent genetic structure of the mouse—but ...
More News »